Evaluate
This is the reference to the functions contained in
evaluate
. For now, they are all accesible directly
through machine-learning-datasets
and you don't
need to use the evaluate
namespace.
Common Utility Functions
evaluate_class_mdl(fitted_model, X_train, X_test, y_train, y_test, plot_roc=True, plot_conf_matrix=False, pct_matrix=True, predopts=None, show_summary=True, ret_eval_dict=False, save_name=None)
Evaluate the performance of a classification model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fitted_model |
BaseModelProtocol
|
The fitted classification model. |
required |
X_train |
ArrayLike
|
The training data. |
required |
X_test |
ArrayLike
|
The testing data. |
required |
y_train |
ArrayLike
|
The labels for the training data. |
required |
y_test |
ArrayLike
|
The labels for the testing data. |
required |
plot_roc |
Optional[bool], default=True
|
Whether to plot the ROC curve. |
True
|
plot_conf_matrix |
Optional[bool], default=False
|
Whether to plot the confusion matrix. |
False
|
pct_matrix |
Optional[bool], default=True
|
Whether to display the confusion matrix as percentages. |
True
|
predopts |
Optional[Dict], default=None
|
Additional options for predicting probabilities. |
None
|
show_summary |
Optional[bool], default=True
|
Whether to display the evaluation summary. |
True
|
ret_eval_dict |
Optional[bool], default=False
|
Whether to return the evaluation metrics as a dictionary. |
False
|
save_name |
Optional[str], default=None
|
The name to save the plots. |
None
|
Returns:
Type | Description |
---|---|
Union[Dict, Tuple[ArrayLike, ArrayLike, ArrayLike]]
|
Union[Dict, Tuple[ArrayLike, ArrayLike, ArrayLike]]: If |
Source code in machine_learning_datasets/evaluate.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
|
evaluate_class_metrics_mdl(fitted_model, y_train_pred, y_test_prob, y_test_pred, y_train, y_test)
Evaluate the classification metrics for a fitted model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fitted_model |
BaseModelProtocol
|
The fitted model. |
required |
y_train_pred |
ArrayLike
|
The predicted labels for the training set. |
required |
y_test_prob |
ArrayLike
|
The predicted probabilities for the test set. Can be None. |
required |
y_test_pred |
ArrayLike
|
The predicted labels for the test set. |
required |
y_train |
ArrayLike
|
The true labels for the training set. |
required |
y_test |
ArrayLike
|
The true labels for the test set. |
required |
Returns:
Name | Type | Description |
---|---|---|
dict |
Dict
|
A dictionary containing the evaluation metrics: - 'fitted': The fitted model. - 'preds_train': The predicted labels for the training set. - 'probs_test' (optional): The predicted probabilities for the test set. - 'preds_test': The predicted labels for the test set. - 'accuracy_train': The accuracy score for the training set. - 'accuracy_test': The accuracy score for the test set. - 'precision_train': The precision score for the training set. - 'precision_test': The precision score for the test set. - 'recall_train': The recall score for the training set. - 'recall_test': The recall score for the test set. - 'f1_train': The F1 score for the training set. - 'f1_test': The F1 score for the test set. - 'mcc_train': The Matthews correlation coefficient for the training set. - 'mcc_test': The Matthews correlation coefficient for the test set. - 'roc-auc_test' (optional): The ROC AUC score for the test set. |
Source code in machine_learning_datasets/evaluate.py
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
|
evaluate_multiclass_mdl(fitted_model, X, y=None, class_l=None, ohe=None, plot_roc=False, plot_roc_class=True, plot_conf_matrix=True, pct_matrix=True, plot_class_report=True, ret_eval_dict=False, predopts=None, save_name=None)
Evaluate a multiclass classification model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fitted_model |
BaseModelProtocol
|
The fitted model to evaluate. |
required |
X |
Union[ArrayLike, DatasetFolder]
|
The input data for evaluation. |
required |
y |
Optional[ArrayLike]
|
The true labels for evaluation. Default is None. |
None
|
class_l |
Optional[list]
|
The list of class labels. Default is None. |
None
|
ohe |
Optional[BaseTransformerProtocol]
|
The one-hot encoder for labels. Default is None. |
None
|
plot_roc |
Optional[bool]
|
Whether to plot ROC curves. Default is False. |
False
|
plot_roc_class |
Optional[bool]
|
Whether to plot ROC curves for each class. Default is True. |
True
|
plot_conf_matrix |
Optional[bool]
|
Whether to plot the confusion matrix. Default is True. |
True
|
pct_matrix |
Optional[bool]
|
Whether to display the confusion matrix as percentages. Default is True. |
True
|
plot_class_report |
Optional[bool]
|
Whether to print the classification report. Default is True. |
True
|
ret_eval_dict |
Optional[bool]
|
Whether to return evaluation metrics as a dictionary. Default is False. |
False
|
predopts |
Optional[Dict]
|
Additional options for prediction. Default is None. |
None
|
save_name |
Optional[str]
|
The name to save the plots. Default is None. |
None
|
Returns:
Type | Description |
---|---|
Union[Dict, Tuple[ArrayLike, ArrayLike]]
|
Union[Dict,Tuple[ArrayLike, ArrayLike]]: The evaluation metrics or predicted labels and probabilities. |
Raises:
Type | Description |
---|---|
TypeError
|
If the data is not in the right format. |
TypeError
|
If sklearn one-hot encoder is not provided when labels aren't already encoded. |
ValueError
|
If the labels don't have dimensions that match the classes. |
ValueError
|
If the list of classes provided doesn't match the dimensions of model predictions. |
Source code in machine_learning_datasets/evaluate.py
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
|
evaluate_multiclass_metrics_mdl(fitted_model, y_test_prob, y_test_pred, y_test, ohe=None)
Evaluate multiclass classification metrics for a fitted model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fitted_model |
BaseModelProtocol
|
The fitted model to evaluate. |
required |
y_test_prob |
ArrayLike
|
The predicted probabilities for each class. |
required |
y_test_pred |
ArrayLike
|
The predicted class labels. |
required |
y_test |
ArrayLike
|
The true class labels. |
required |
ohe |
Optional[BaseTransformerProtocol]
|
The one-hot encoder transformer. Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
Dict |
Dict
|
A dictionary containing the evaluation metrics. |
Source code in machine_learning_datasets/evaluate.py
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
|
evaluate_reg_mdl(fitted_model, X_train, X_test, y_train, y_test, scaler=None, plot_regplot=True, y_truncate=False, show_summary=True, ret_eval_dict=False, predopts=None, save_name=None)
Evaluate a regression model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fitted_model |
BaseModelProtocol
|
The fitted regression model. |
required |
X_train |
ArrayLike
|
The training data features. |
required |
X_test |
ArrayLike
|
The testing data features. |
required |
y_train |
ArrayLike
|
The training data target variable. |
required |
y_test |
ArrayLike
|
The testing data target variable. |
required |
scaler |
Optional[BaseTransformerProtocol]
|
The scaler to use for inverse transforming the target variables. Default is None. |
None
|
plot_regplot |
Optional[bool]
|
Whether to plot a regression plot. Default is True. |
True
|
y_truncate |
Optional[bool]
|
Whether to truncate the target variables to match the predicted values. Default is False. |
False
|
show_summary |
Optional[bool]
|
Whether to print the evaluation summary. Default is True. |
True
|
ret_eval_dict |
Optional[bool]
|
Whether to return the evaluation metrics as a dictionary. Default is False. |
False
|
predopts |
Optional[Dict]
|
Additional options for the predict method. Default is None. |
None
|
save_name |
Optional[str]
|
The name to use for saving the regression plot. Default is None. |
None
|
Returns:
Type | Description |
---|---|
Union[Dict, Tuple[ArrayLike, ...]]
|
Union[Dict, Tuple[ArrayLike, ...]]: If ret_eval_dict is True, returns the evaluation |
Union[Dict, Tuple[ArrayLike, ...]]
|
metrics as a dictionary. |
Union[Dict, Tuple[ArrayLike, ...]]
|
If y_truncate is True, returns the predicted values and target variables for both |
Union[Dict, Tuple[ArrayLike, ...]]
|
training and testing data. |
Union[Dict, Tuple[ArrayLike, ...]]
|
Otherwise, returns only the predicted values for both training and testing data. |
Source code in machine_learning_datasets/evaluate.py
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
|
evaluate_reg_metrics_mdl(fitted_model, y_train_pred, y_test_pred, y_train, y_test)
Evaluates regression metrics for a fitted model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fitted_model |
BaseModelProtocol
|
The fitted model. |
required |
y_train_pred |
ArrayLike
|
Predicted values for the training set. |
required |
y_test_pred |
ArrayLike
|
Predicted values for the test set. |
required |
y_train |
ArrayLike
|
True values for the training set. |
required |
y_test |
ArrayLike
|
True values for the test set. |
required |
Returns:
Name | Type | Description |
---|---|---|
dict |
Dict
|
A dictionary containing the following evaluation metrics: - 'fitted': The fitted model. - 'preds_train': Predicted values for the training set. - 'preds_test': Predicted values for the test set. - 'trues_train': True values for the training set. - 'trues_test': True values for the test set. - 'rmse_train': Root mean squared error for the training set. - 'rmse_test': Root mean squared error for the test set. - 'r2_train': R-squared score for the training set. - 'r2_test': R-squared score for the test set. |
Source code in machine_learning_datasets/evaluate.py
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
|